阎坤. 天体运行轨道的背景介质理论导引与自相似分形测度计算的分维微积分基础[R]. 西安现代非线性科学应用研究所, 2007 04 28. |
本文框架内容发表在: |
天体运行轨道的背景介质理论导引与自相似分形测度计算的分维微积分基础阎 坤 |
摘 要:通过讨论天体运行背景介质理论的连续轨道及离散轨道这二个研究方向的基础假设,介绍了天体运行轨道的具体方程形式及理论框架概要;进一步地通过讨论天体运行轨道Binet方程的一般形式及其行星近日点进动角的解,给出了连续轨道理论与Newton理论及Einstein广义相对论的联系与区别;通过讨论天体运行轨道的分维扩展方程,给出了包括太阳系行星、天王星卫星、地球卫星、绕月航天器等在内的离散轨道(稳定性轨道)方程及其预言数据。特别地,作为对天体在较为广泛区域作用曲线的初步探讨推论,指出仅由天体引力难以形成质量密度趋于无穷大的理想黑洞。通过讨论函数的分维导数的位置假设及幂函数的分维导数的形式假设,进一步明晰了幂函数的分维导数、分维微分及分维积分的具体方程形式,给出分维导数与分数阶导数的区别,探讨了自相似分形扩展与分维扩展的差分方程描述方法,随后讨论了基于一般分形测度的非整数阶微积分定义导出的自相似分形测度趋势性微积分方程具体形式,给出了其与目前Hausdorff测度方法(覆盖方法)的区别,并对包括三分Cantor集合、Koch曲线、Sierpinski垫片及正交十字星形等自相似分形在内的测度进行了计算分析,最后探讨了一种理想点集的维数及测度计算方程。 |
YAN Kun |
Abstract In this paper, by discussing the basic hypotheses about the continuous orbit and discrete orbit in two research directions of background medium theory for celestial body motion, concrete equation forms and their summary of the theoretic frame of celestial body motion are introduced. Future more, by discussing the general form of Binet’s equation of celestial body motion orbit and it’s solution of the advance of the perihelion of planets, some relations and differences between the continuous orbit theory and Newton’s gravitational theory and Einstein’s general relativity are given. And by discussing fractional-dimension expanded equation for the celestial body motion orbits, the concrete equations and the prophesy data of discrete orbit or stable orbits of celestial bodies which included the planets in the Solar system, satellites in the Uranian system, satellites in the Earth system and satellites obtaining the Moon obtaining from discrete orbit theory are given too. Especially, as preliminary exploration and inference to the gravitational curve of celestial bodies in broadly range, the concept for the ideal black hole with trend to infinite in mass density difficult to be formed by gravitation only is explored. By discussing the position hypothesis of fractional-dimension derivative about function and formula form the hypothesis of fractional-dimension derivative about power function, concrete equation formulas of fractional-dimension derivative, differential and integral are described distinctly further, and difference between the fractional-dimension derivative and the fractional-order derivative are given too. The difference equations description of the self-similar fractal extension and fractional-dimension extension are discussed. Subsequently, the concrete forms of measure tendency calculus equations of self-similar fractal obtaining by based on the definition of form in non-integral order calculus about general fractal measure are discussed again, and differences with Hausdorff measure method or the covering method at present are given. By applying the measure calculation equations, measure of self-similar fractals which include middle-third Cantor set, Koch curve, Sierpinski gasket and orthogonal cross star are calculated and analyzed. At the end, the calculating equations of dimension and measure of an ideal points set are explored. |
引 言 在采用Euclid几何的Newton天体力学之后,目前关于天体运行轨道的描述主要有三个研究方向,其一是采用Riemann几何的Einstein广义相对论描述[1~3],其二是仍采用Euclid几何的背景介质理论连续轨道描述[4, 5],其三是采用Mandelbort分形几何的分维扩展离散轨道描述[4]。 极限上,上述前二个方法都要求在极弱场情况下方程 能够退化为Newton方程形式,在弱场情况下能够给出符合诸如行星近日点进动数据[6]的解。与连续轨道理论模式相比,后面的第三个描述离散轨道理论则属于稳定轨道理论模式,目前已给出部分天体的离散轨道方程具体形式。 天体运行背景介质理论的离散轨道描述是基于分维扩展方法建立的,其深入的研究尚依赖于分维数学解析基础的确立和发展。 目前在非整数阶微积分与自相似分形测度计算领域,现各有二个方向;在非整数阶微积分方面,其一是基于函数或整数阶积分变换直接外推默认的非局域性分数阶微积分[7~11],其二是基于相邻整数阶导数位置假设的局域性分维微积分[12, 4];在自相似分形测度计算方面,其一是基于Hausdorff测度的覆盖方法[13~16],其二是基于分数阶微积分及分维微积分的测度趋势性计算方程方法[12, 4]。
|
相关研究 |