阎坤.新型冠状病毒肺炎感染数据的PSSIR模型方程分析方法及其趋势预测[Report].西安现代非线性科学应用研究所,2020-02-22. |
新型冠状病毒肺炎感染数据的PSSIR模型方程分析方法及其趋势预测 阎 坤 |
摘 要:通过对2003年北京与香港二城市SARS病毒感染数据的分析讨论及基于在2020年1月11日~2月21日之间中国境内新型冠状病毒肺炎确诊感染人数数据的公布资料,采用简洁的一般饱和过程分析方法,给出了相应的偏对称方程(欠对称或弱对称方程)形式,进而由偏对称方程讨论了小样本数据量时的SIR模型方程组,给出了PSSIR模型方程形式及其近似解,在趋势层面分析计算了中国境内及中国境内除湖北省外地区新型冠状病毒肺炎感染累计数据,给出了相应的拐点位置与趋势预测的阶段性极限值,分析结果为病毒感染疫情发展过程的多变量非线性动力学方程组描述提供参考。 |
YAN Kun |
Abstract In this paper, by discussing the cumulative number of people of confirmed SARS(severe acute respiratory syndrome) virus infection in Beijing and Hongkong in 2003, and basing on the data of the number of novel coronavirus pneumonia(called NCP or 2019-nCOV(2019-new coronavirus)) confirmed infection in China between 11 January and 21 February 2020, using the simple analysis method of the general saturation process, corresponding partial-symmetrical equations(or weak-symmetrical equations) are given. Then by using the partial-symmetrical equations, the SIR model equations with the small sample data volume are discussed, PSSIR model equations and its approximate solutions are given preliminarily, and the accumulated data of the novel coronavirus pneumonia infection in China and in China except for Hubei Province are analyzed and calculated tentatively. At the same time, corresponding inflection point position and stage limit value of tendency prediction are given too. The results of this paper provide a reference for the description of multivariable nonlinear dynamic equations in the development of viral infection. |
引言 |
相关研究 |